Fakultät 7 – Naturwissenschaftlich-Technische Fakultät II Fachrichtung Systems Engineering

Modul Charakterisierung von Mikrostrukturen (Messtechnik III)					Abk.
Studiensem.	Regelstudiensem.	Turnus	Dauer	SWS	ECTS-Punkte
1	3	Jedes WS	1 Semester	3	4

Modulverantwortliche/r Dr. Tilman Sauerwald

Dozent/inn/en Dr. Tilman Sauerwald und Mitarbeiter des Lehrstuhls Messtechnik

Zuordnung zum Curriculum Master Systems Engineering;

Master Mikrotechnologie und Nanostrukturen, Kernbereich

Mikrosystemtechnik

Zulassungsvoraussetzungen Keine formalen Voraussetzungen

Leistungskontrollen / Prüfungen Mündliche Prüfung

Lehrveranstaltungen / SWSVorlesung Messtechnische Charakterisierung von Mikrostrukturen

und begleitende Übung, 3SWS, V2 Ü1

Arbeitsaufwand Vorlesung + Präsenzübungen 15 Wochen 3 SWS 45 h

Vor- und Nachbereitung 45 h Prüfungsvorbereitung 30 h

Modulnote Note der mündlichen Prüfung

Lernziele/Kompetenzen

Kennen lernen verschiedener Methoden und Prinzipien für die messtechnische Charakterisierung von Mikrostrukturen; Bewertung unterschiedlicher Methoden für spezifische Fragestellungen. Vergleich unterschiedlicher abbildender Verfahren für Mikrostrukturen sowie oberflächenanalytischer Prinzipien.

Inhalt

- Einführung: Gassensoren und Gasmesstechnik Anforderungen und aktuelle Fragestellungen (Gassensoren dienen zur Motivation der unterschiedlichen Charakterisierungsmethoden);
- Aufbau von Messsystemen: Steuerungs- und Datenaufnahmekonzepte; Benutzer-Oberflächen;
- Präparation von Sensoren und zugehörige Messverfahren
- Charakterisierung von Mikrostrukturen mit abbildenden Verfahren:
 - o Optische Mikroskopie und optische Messverfahren
 - o IR-Mikroskopie,
 - o Rasterelektronenverfahren,
 - o Rastersondenmethoden.
- Oberflächenreaktionen
- Material- und Oberflächencharakterisierungsmethoden
 - o Röntgendiffraktometrie (XRD),
 - o Fotoelektronenspektroskopie (XPS/ESCA),
 - Massenspektrometrische Methoden (SIMS; TDS, Untersuchung chemischer Reaktionen mittels reaktiver Streuung).
- Referenzmethoden für die Gasmesstechnik
 - o Infrarotspektroskopie, insbesondere FTIR,
 - o Gaschromatographie, insbesondere mit Kopplung Massenspektrometrie

Fakultät 7 – Naturwissenschaftlich-Technische Fakultät II Fachrichtung Systems Engineering

Weitere Informationen

Vorlesungsunterlagen (Folien) und Übungen werden begleitend im Internet zum Download bereitgestellt; Übungen werden großteils direkt an den Messapparaturen des Lehrstuhls für Messtechnik bzw. anderer Arbeitsgruppen durchgeführt. Den Schwerpunkt bilden Mikrogassensoren und Sensorschichten, die als Basis für die Motivation von Messverfahren zur Charakterisierung von Mikrostrukturen dienen.

Unterrichtssprache: deutsch

Literaturhinweise:

(alle Bücher können am Lehrstuhl für Messtechnik nach Rücksprache eingesehen werden)

- begleitendes Material zur Vorlesung (http://www.lmt.uni-saarland.de).
- Grundlagen Gasmesstechnik
 - P. Gründler: "Chemische Sensoren eine Einführung für Naturwissenschaftler und Ingenieure", Springer, 2003.
 - E. Comini, G. Faglia, G. Sberveglieri (Eds.), "Solid State Gas Sensing", Springer, 2009.
 - T.C. Pearce, S.S. Schiffman, H.T. Nagle, J.W. Gardner (eds.): "Handbook of Machine Olfaction Electronic Nose Technology", WILEY-VCH, 2003.
- Oberflächenanalytik
 - H. Lüth: "Solid Surfaces, Interfaces and Thin Films", Springer
 - H. Bubert, H. Jenett (eds.): "Surface and Thin Film Analysis", WILEY-VCH
 - D.J. O'Connor, B.A. Sexton, R.St.C. Smart (eds.): "Surface Analysis Methods in Material Science", Springer